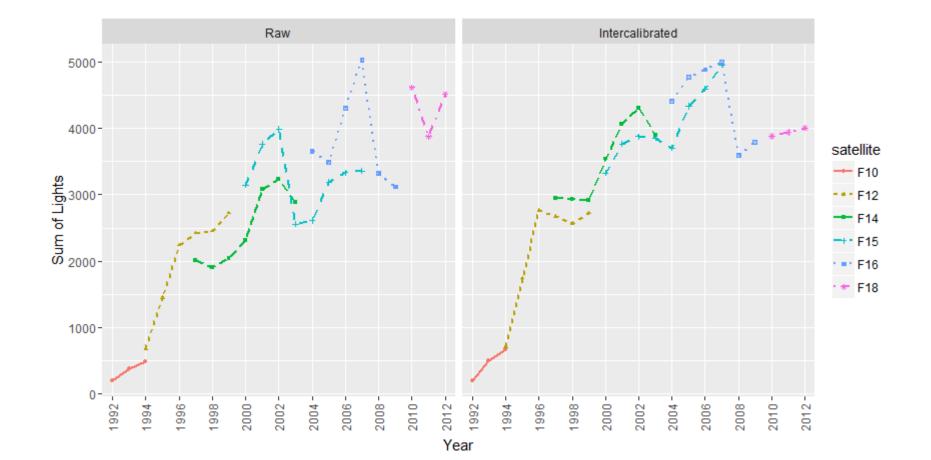
Measuring rural electrification with satellite data

Takwanisa Machemedze, Taryn Dinkelman, Mark Collinson, Wayne Twine and Martin Wittenberg

Overview

- How do we measure development in the absence of high quality social survey information?
- Argued that night light data captured by satellites can provide a reliable measure of development in contexts where:
 - other measures do not exist or
 - where the quality of the data is such that the statistics cannot be trusted.

What do we want to test


- a) Does the satellite data pick up the temporal patterns of rural electrification?
- b) Does the satellite data pick up the spatial patterns of electrification? Can it pick up the difference between developed and undeveloped areas? And at what spatial resolution?
- c) What is the correlation between the satellite data and the household electrification data?

Data

• Data

- DMSP-OLS night light data
- 6 satellites over 21 years (1992-2012)
- Pixel values ranging from 0 (absents of light) to 63 (light saturation)
- Inter-calibration to a common range defined by a reference year
 - no on-board calibration,
 - there are differences in the performance of instruments,
 - different sensors had different detection limits and saturation radiances.
- sum of the digital values for a given area as the measure of light for that area.
- Also referred to as Sum of Light (SOL) or total night light (TNL)

Raw data vs Intercalibration

Data

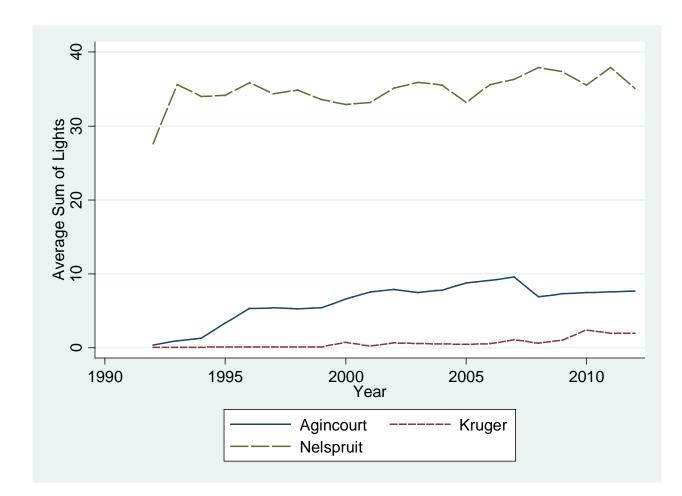
- SOL sensitive to the size of the area over which it is calculated
- For comparison between areas, we use standardised SOL, i.e. SOL/pixels
- weighted by the proportion of the pixel within the polygon
- Agincourt HDSS study site census data
 - household assets module conducted every second year since 2001
- Village typology (Hargreaves 2000) classifying villages as:
 - a) "Central communities" b) "Established communities" c) "Undeveloped villages" and d) "Refugee settlements"
 - First two categories had electricity access in 2000

Methods - Temporal variation in the night light data

- First cut is to look at temporal trends in nightlight data
- However, increasing trends do not establish electrification
- Use a ready made counterfactual the Kruger National Park
 - KNP not electrified except for isolated camp sites
 - difference-in-difference estimation strategy
- $\frac{sol}{pixel} = \beta_1 + \beta_2 t + \gamma Agincourt + \delta t * Agincourt + \varepsilon$ (1)
 - Measure of interest is delta
 - Also used Nelspruit (an established urban area) as a counterfactual and pooled data (Nelspruit and KNP)

Methods -Spatial variation in the night light data

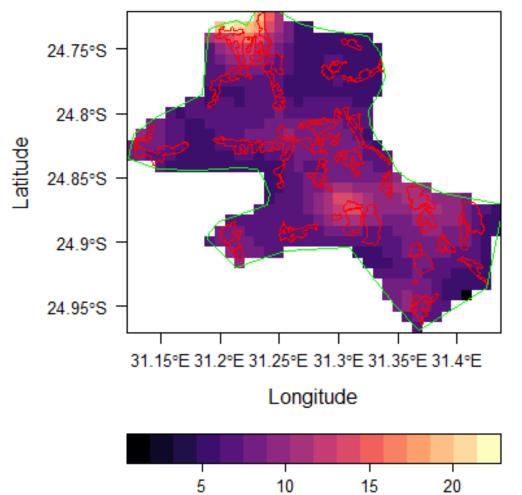
- circumstantial evidence of electrification
- Check differences between village typologies, i.e. electrified versus not.
- Hargreaves(2000) typology
 - type1-central, type2- established, type3 underdeveloped, type4 -refugee


•
$$\frac{sol}{pixel} = \beta_1 + \beta_2 type2 + \beta_3 type3 + \beta_4 type4 + \varepsilon$$
 (2)

- Also test nightlight data with direct measure of HH electricity connections
- $sol/pixel = \beta_1 + \beta_2 connections/pixel + \varepsilon$ (3)

Methods - Variation in space and time

- A model that use both cross-sectional and temporal variation
- $sol/pixel_{it} = \beta_1 + \beta_2 connections/pixel_{it} + \theta_i + \eta_t + \varepsilon_{it}$ (4)
 - where i subscripts village and t year. The θi terms are village fixed effects, ηt year fixed effects and εit is an idiosyncratic error.



	(1)	(2)	(3)	(4)	(5)
VARIABLES	Agincourt	Kruger	Nelspruit	Pooled	Pooled
t	0.348**	0.0932**	0.211*	0.0932**	0.152**
	(0.0649)	(0.0164)	(0.0889)	(0.0167)	(0.0429)
Agincourt				2.690**	3.336**
				(0.923)	(0.899)
Nelspruit				32.88**	34.18**
				(1.312)	(0.453)
t*Agincourt				0.255**	0.196*
				(0.0776)	(0.0722)
t*Nelspruit				0.118	
				(0.0970)	
Constant	2.322**	-0.368*	32.52**	-0.368*	-1.014*
	(0.799)	(0.140)	(1.240)	(0.142)	(0.481)
Observations	21	21	21	63	63
R-squared	0.670	0.696	0.355	0.992	0.992
Robust standard errors in parentheses					

** p<0.01, * p<0.05

Results – variation in space (2012 image)

Ę

Results — variation in space

Ē

	(1)	(2)	(3)	(4)
			without Village X	
VARIABLES	2000	Pooled	2000	Pooled
established	-0.0646	-0.0949	-0.0646	-0.0949
	(0.991)	(0.454)	(0.998)	(0.454)
undeveloped	-3.356*	-1.774**	-3.356*	-1.774**
	(1.156)	(0.455)	(1.164)	(0.455)
refugee	-1.829	-0.296	-3.086**	-1.219*
	(1.545)	(0.506)	(0.957)	(0.511)
Constant	8.842**	7.544**	8.842**	7.544**
	(0.797)	(0.321)	(0.802)	(0.321)
Observations	20	420	19	399
R-squared	0.360	0.041	0.568	0.049

Village types taken from Hargreaves (2000). Base category is "central community" Robust standard errors in parentheses

** p<0.01, * p<0.05, + p<0.1

Results — variation in space

Panel A:	(1)	(2)	(3)	(4)	(5)	(6)
All villages	2001	2003	2005	2007	2009	2011
Connections/pixel	0.00875	0.00961*	0.00113	0.00475	0.00150	0.00231+
	(0.00564)	(0.00424)	(0.00260)	(0.00389)	(0.00123)	(0.00122)
Constant	7.249**	6.557**	9.766**	9.439**	7.581**	7.601**
	(0.928)	(0.985)	(0.638)	(0.952)	(0.375)	(0.451)
Observations	21	21	21	25	27	27
R-squared	0.124	0.233	0.007	0.068	0.016	0.045
Panel B:	(1)	(2)	(3)	(4)	(5)	(6)
Without Village X	2001	2003	2005	2007	2009	2011
Connections/pixel	0.0126*	0.0124**	0.00326	0.00750*	0.00144	0.00243+
	(0.00443)	(0.00334)	(0.00209)	(0.00303)	(0.00136)	(0.00126)
Constant	6.476**	5.865**	9.220**	8.732**	7.495**	7.440**
	(0.585)	(0.761)	(0.546)	(0.759)	(0.390)	(0.440)
Observations	20	20	20	24	26	26
R-squared	0.322	0.422	0.061	0.169	0.017	0.060
Robust standard errors in parentheses						
** p<0.01, * p<0.05, + p<0.1						

Results - both the temporal and spatial variation

	(1) Pooled	(2) Pooled	(3) Pooled	
connect/pixel	0.00413**	0.00419**	0.00720**	
	(0.00128)	(0.00128)	(0.00189)	
2001b.year				
2003.year	-0.429	-0.431	-0.521	
	(0.703)	(0.673)	(0.493)	
2005.year	1.422*	1.417*	1.193**	
	(0.607)	(0.598)	(0.426)	
2007.year	1.777**	1.797**	1.890**	
	(0.657)	(0.640)	(0.407)	
2009.year	-0.764	-0.898	-0.837	
	(0.577)	(0.566)	(0.426)	
2011.year	-0.642	-0.778	-0.841	
	(0.600)	(0.588)	(0.429)	
Village Effects	N	Ν	Y	
Quartic in pixels	N	Y	N.A.	
Constant	7.779**	11.00**	7.151**	
	(0.542)	(1.281)	(0.397)	
Observations	142	142	142	
R-squared	0.272	0.319	0.761	
Robust standard errors in parentheses				
** p<0.01, * p<0.05				

Conclusion

- nightlight data seems to have captured the electricity roll-out in the Agincourt study site.
- shows marked increases in brightness over time and captures the broad differences between "developed" and "undeveloped" parts of the site
- Also shown some measurement issues which contaminate the relationship