# Kenya - Multiple Indicator Cluster Survey 2013-2014, Bungoma County

Reference ID | ken-mics-bc-2013-2014-v1 |

Year | 2013 - 2014 |

Country | Kenya |

Producer(s) |
Kenya National Bureau of Statistics - Government of Kenya Population Studies and Research Institute - University of Nairobi |

Sponsor(s) | United Nations Children’s Fund - - Financial and technical support |

Collection(s) |

Created on

Nov 22, 2017

Last modified

Nov 22, 2017

Page views

47074

Data Appraisal

Estimates of Sampling Error The sample of respondents selected in the Bungoma County MICS is only one of the samples that could have been selected from the same population, using the same design and size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between the estimates from all possible samples. The extent of variability is not known exactly, but can be estimated statistically from the survey data. The following sampling error measures are presented in this appendix for each of the selected indicators: - Standard error (se): Standard error is the square root of the variance of the estimate. For survey indicators those are means, proportions or ratios, the Taylor series linearization method is used for the estimation of standard errors. For more complex statistics, such as fertility and mortality rates, the Jackknife repeated replication method is used for standard error estimation. - Coefficient of variation (se/r) is the ratio of the standard error to the value (r) of the indicator, and is a measure of the relative sampling error. - Design effect (deff) is the ratio of the actual variance of an indicator, under the sampling method used in the survey, to the variance calculated under the assumption of simple random sampling based on the same sample size. The square root of the design effect (deft) is used to show the efficiency of the sample design in relation to the precision. A deft value of 1.0 indicates that the sample design of the survey is as efficient as a simple random sample for a particular indicator, while a deft value above 1.0 indicates an increase in the standard error due to the use of a more complex sample design. - Confidence limits are calculated to show the interval within which the true value for the population can be reasonably assumed to fall, with a specified level of confidence. For any given statistic calculated from the survey, the value of that statistic will fall within a range of plus or minus two times the standard error (r + 2.se or r - 2.se) of the statistic in 95 percent of all possible samples of identical size and design. For the calculation of sampling errors from the MICS data, programs developed in CSPro Version 5.0, SPSS Version 21 Complex Samples module and CMRJack116 have been used. The results are shown in the tables that follow. In addition to the sampling error measures described above, the tables also include weighted and unweighted counts of denominators for each indicator. Given the use of normalized weights, by comparing the weighted and unweighted counts it is possible to determine whether a particular domain has been under-sampled or over-sampled compared to the average sampling rate. If the weighted count is smaller than the unweighted count, this means that the particular domain had been over-sampled. As explained later in the footnote of Table SE.1, there is an exception in the case of indicators 4.1 and 4.3, for which the unweighted count represents the number of sample households, and the weighted counts reflect the total population. Sampling errors are calculated for indicators of primary interest, at the county level, and for urban and rural areas within Bungoma County. Three of the selected indicators are based on household's members, eight are based on women, and two are based on children under 5. Table SE.1 shows the list of indicators for which sampling errors are calculated, including the base population (denominator) for each indicator. Tables SE.2 to SE.4 show the calculated sampling errors for selected domains. |